Development of a novel 129l tracer method to quantify iodine absorption, retention and excretion in humans

Project 484

V Galetti, O van der Reijden, M Andersson, I Herter-Aeberli, MB Zimmermann Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich

Background and objective:

Thyroidal iodine uptake and turnover has been measured in adults using radioactive iodine tracers (¹²⁵I,¹³¹I), but these cannot be used safely in women or children. Iodine requirements for these population groups have never been directly measured and are derived from male adult requirements. Our objectivewas to assess ¹²⁹I (a semi-stable isotope that is considered safe for use in human trials) as a novel tracer for the measurement of iodine fractional absorption (¹²⁹IFA) and iodine thyroidal uptake (¹²⁹ITU) that can be safely used in all population groups.

Methods:

We administered an oral physiological tracer dose of $12.42\pm0.05 \ \mu g^{129}I$ (¹²⁹IDose) to four male and fourfemale euthyroid adults with adequate iodine intake. Starting at baseline, we collected complete urines over 8 days, complete faeces over 4 days, and spot plasma over 5 days. We measured ¹²⁹I in alkaline- extracted urines (¹²⁹IU) previously spiked with a known amount of ¹²⁹I by multicollector inductively coupled plasma mass spectrometry (ICP-MS) using isotope dilution analysis (IDA). We measured ¹²⁹I in plasma (¹²⁹IP) and faeces (¹²⁹IF) previously spiked with a known amount of ¹²⁷I by accelerator mass spectrometry (AMS) using IDA. We then calculated ¹²⁹IFA as ¹²⁹IDose minus ¹²⁹IF, ¹²⁹ITU as ¹²⁹IFA minus ¹²⁹IU. We constructed ¹²⁹IP kinetic curves to evaluate the thyroid uptake patterns and number of body compartments.

Results:

¹²⁹IU was first detected ~1 hour after tracer administration. A median (IQR) cumulative ¹²⁹IU of 8.3 (7.1-8.6) µg was excreted, corresponding to $64.3\pm7.4\%$ of the ¹²⁹IDose. Cumulative ¹²⁹IF was 0.4 (0.3- 0.7) µg, corresponding to $4.7\pm3.2\%$ of the ¹²⁹IDose. Therefore, ¹²⁹IFA was 11.9 (11.7-12.1) µg, meaning that $95.3\pm3.2\%$ of ¹²⁹IDose was absorbed at the gastro-intestinal level. ¹²⁹ITU was 3.9 (3.5-4.2)µg, meaning that $31.0\pm5.2\%$ of ¹²⁹IDose reached the thyroid as the sole site of utilization. However, the log ¹²⁹IP kinetic curves typically described a 3-compartment model, thus, other than plasma and thyroid, a third compartment may be involved in iodine metabolism.

Conclusions:

This novel and safe ¹²⁹I tracer-based method successfully quantified ¹²⁹I urinary and faecal excretion, allowing the quantification of iodine fractional absorption and an estimation of thyroidal uptake. The pharmacokinetic preliminary analysis showed that iodine metabolism is best described by a multiple- compartment model, suggesting that additional compartments, other than plasma, urine and thyroid, may be involved in iodine metabolism. Due to a high variability, patterns of iodine thyroid uptake couldnot be drawn as conclusive. Further analysis of the collected pharmacokinetic parameters is needed in order to refine estimations of iodine thyroid uptake, that are key for defining iodine requirements.